Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dicopper(II) trihydroxide cyanoureate dihydrate

Ann M. Chippindale,* Simon J. Hibble and Edward J. Bilbé

Department of Chemistry, University of Reading, Whiteknights, Reading, Berks RG6 6AD, England
Correspondence e-mail: a.m.chippindale@rdg.ac.uk

Received 4 February 2009
Accepted 2 June 2009
Online 20 June 2009

The title compound, poly[[μ-cyanoureato-tri- μ-hydroxidodicopper(II)] dihydrate], $\left\{\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}\right)(\mathrm{OH})_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is a new layered copper(II) hydroxide salt (LHS) with cyanoureate ions and water molecules in the interlayer space. The three distinct copper(II) ions have distorted octahedral geometry: one Cu (symmetry $\overline{1}$) is coordinated to six hydroxide groups $(4 \mathrm{OH}+2 \mathrm{OH})$, whilst the other two Cu atoms (symmetries $\overline{1}$ and 1) are coordinated to four hydroxides and two N atoms from nitrile groups of the cyanoureate ions $(4 \mathrm{OH}+2 \mathrm{~N})$. The structure is held together by hydrogen-bonding interactions between the terminal - NH_{2} groups and the central cyanamide N atoms of organic anions associated with neighbouring layers.

Comment

In addition to the much studied layered double hydroxides (LDH), such as hydrotalcite, $\mathrm{Mg}_{6} \mathrm{Al}_{2}(\mathrm{OH})_{16}\left(\mathrm{CO}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, and related transition-metal substituted phases (Rives, 2001; Evans \& Slade, 2006), a second class of materials with structures derived from brucite, $\operatorname{Mg}(\mathrm{OH})_{2}$, namely the layered metal hydroxide salts (LHS), are gaining in scientific and technological importance (Arizaga et al., 2007). This results from their potential uses as anion exchangers, catalysts and two-dimensional magnetic materials (Laget et al., 1998, 1999; Yamanaka et al., 1992). The LHS have the general formula $M^{2+}(\mathrm{OH})_{2-x}\left(A^{m-}\right)_{x / m} \cdot n \mathrm{H}_{2} \mathrm{O}$, where M is a divalent metal and A is a counter-anion; examples include $M_{2}(\mathrm{OH})_{3}(A)(M=\mathrm{Co}$, $\left.\mathrm{Ni}, \mathrm{Cu} ; A=\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}\right), \mathrm{Cd}(\mathrm{OH}) \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Zn}_{5}(\mathrm{OH})_{8}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Arizaga et al., 2007). Most pertinent to this work are the copper hydroxide salts, $\mathrm{Cu}_{2}(\mathrm{OH})_{3}(A)$, where A can be a simple anion, as above, or a long-chain organic anion, such as an alkylsulfonate $\left(n-\mathrm{C}_{m} \mathrm{H}_{2 m+1} \mathrm{OSO}_{2}{ }^{-}\right.$; Park \& Lee, 2005) or alkylcarboxylate ($n-\mathrm{C}_{m} \mathrm{H}_{2 m+1} \mathrm{COO}^{-}$; Fujita \& Awaga, 1996, 1997). Adjusting the alkyl chain length in the organic anions enables the magnetic behaviour of the layered materials to be tuned by changing the relative importance of the intra- and interlayer interactions.

Full structural studies of $\mathrm{Cu}_{2}(\mathrm{OH})_{3}(A)$ using single-crystal and powder X-ray diffraction have been reported in a number of cases $\left[A=\mathrm{NO}_{2}{ }^{-}\right.$(Schmidt et al., 1993), $\mathrm{NO}_{3}{ }^{-}$(Effenberger, 1983; Guillou et al., 1994), Cl^{-}(Hawthorne, 1985), Br^{-} (Oswald et al., 1961) and $\mathrm{CH}_{3} \mathrm{COO}^{-}$(Masciocchi et al., 1997)]. These results, together with EXAFS studies of compounds with $A=\mathrm{CH}_{3} \mathrm{COO}^{-}$and Br^{-}(Jiménez-López et al., 1993), provide evidence for the coordination of A to Cu atoms in the copper hydroxide layers. All reported structures exhibit a $\mathrm{Cu}_{2}(\mathrm{OH})_{3} \mathrm{Cl}$ botallackite-type structure, in which the Cu atoms lie in $4+2(\mathrm{O}+A)$ and $4+1+1(\mathrm{O}+\mathrm{O}+A)$ environments.

In this work, we report the structure of a new inorganicorganic hybrid material $\mathrm{Cu}_{2}(\mathrm{OH})_{3}\left[\mathrm{H}_{2} \mathrm{NC}(=\mathrm{O}) \mathrm{NCN}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, in which cyanoureate ions and water molecules reside between the copper(II) hydroxide layers. The cyanoureate ions coordinate to Cu via the nitrile N atoms. Within the layers, there are three crystallographically distinct Cu atoms, two of which, Cu 2 and Cu 3 , reside on inversion centres at special positions $2 a$ and $2 c$, respectively, while the third, Cu 1 , lies on general position $4 e$ (Fig. 1). Each Cu atom has an elongated octahedral coordination, with four shorter $\mathrm{Cu}-\mathrm{O}$ bonds ($\sim 2 \AA$) and two longer bonds ($>2.3 \AA$), in accordance with the Jahn-Teller distortion of Cu in a +2 oxidation state (Table 1). In the cases of atoms Cu 1 and Cu 2 , the longer bonds are to atom N 3 , and for Cu 3 , to atom O 3 . Each O atom within the layer (O1, O2 and O 3) is coordinated to three Cu atoms and a H atom. All the H atoms in the structure were located in difference Fourier maps. The copper hydroxide layers lie parallel to the $b c$ plane and stack along the a axis in an $\ldots A A \ldots$ fashion. The $\mathrm{Cu}^{\text {II }}$ ions within the layers form a triangular array (Fig. 2), with the shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in the range 3.010 (3)-3.164 (3) \AA, comparable with those found in other $\mathrm{Cu}_{2}(\mathrm{OH})_{3} A$ compounds

Figure 1
The local coordination in the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes are as in Table 1.

Figure 2
A view along the a axis of the inorganic layer, showing the triangular array of $\mathrm{Cu} 1, \mathrm{Cu} 2$ and Cu 3 atoms within the $\mathrm{Cu}_{2} \mathrm{O}_{3}$ layers. Key: small white spheres are O atoms and small grey spheres are N 3 atoms. The remaining atoms of the cyanoureate ions, together with the hydroxide H atoms, have been omitted.
known to exhibit intralayer magnetic interactions (JiménezLópez et al., 1993).

The interlayer space contains cyanoureate ions, formed by the hydrolysis of dicyanamide anions, viz. $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$, under basic conditions, together with water molecules. The bond lengths and angles within the cyanourea moiety are in good agreement with those observed for the anions in $\mathrm{Ag}^{+}\left[\mathrm{H}_{2} \mathrm{NC}(=\mathrm{O}) \mathrm{NCN}\right]^{-}$(Britton, 1987) and $\mathrm{NH}_{4}^{+}\left[\mathrm{H}_{2} \mathrm{~N}-\right.$ $\mathrm{C}(=\mathrm{O}) \mathrm{NCN}]^{-}$(Lotsch \& Schnick, 2004). The cyanoureate ion is almost planar, with a cis arrangement of the N3/C2/N2 and O 4 groups. This conformation enables atom O 4 of the $\mathrm{C} 1=\mathrm{O} 4$ carbonyl group to form a hydrogen bond with the $\mathrm{O} 1-\mathrm{H} 1$ hydroxide group of the layer, as well as with the interlayer water molecules $\mathrm{H}_{2} \mathrm{O} 5$ and $\mathrm{H}_{2} \mathrm{O} 6$ (Table 2 and Fig. 3). The other hydroxide groups, O 2 H 2 and O 3 H 3 , also form hydrogen bonds with water molecules $\mathrm{H}_{2} \mathrm{O} 6$ and $\mathrm{H}_{2} \mathrm{O} 5$, respectively, which in turn interact with each other. Hydrogenbonding interactions between the amide $\mathrm{N}_{1} \mathrm{H}_{2}$ group and the central N 2 atom of cyanoureate anions associated with adjacent layers serve to hold the layers together.

To the best of our knowledge, $\mathrm{Cu}_{2}(\mathrm{OH})_{3}\left[\mathrm{H}_{2} \mathrm{NC}(=\mathrm{O})\right.$ $\mathrm{NCN}] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is the first example of a layered solid in which the cyanoureate ion acts a ligand coordinating to a metal centre. Compounds are known in which the cyanoureate ion links metal atoms into dimers, e.g. in $\left[\mathrm{Cu}_{2}\left\{\mathrm{NCNC}(=\mathrm{O}) \mathrm{NH}_{2}\right\}\right.$ $(\mathrm{R} 3 \mathrm{Bm})]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (where R 3 Bm is an m-xylyl-linked cryptand; Escuer et al., 2004), and chains, e.g. in $\mathrm{Ag}^{+}\left[\mathrm{H}_{2} \mathrm{NC}(=\mathrm{O}) \mathrm{NCN}\right]^{-}$(Britton, 1987). Interestingly, coordination to the Cu atoms occurs through atom N 3 of the nitrile group rather than through atom N 2 , which formally carries the negative charge of the ion. In this respect, the behaviour of the

Figure 3
A view along the b axis, showing the $\ldots A A \ldots$ stacking of the copper hydroxide layers. Hydrogen-bonding interactions between the O1H, O2H and O 3 H hydroxide groups, the $\mathrm{H}_{2} \mathrm{O} 5$ and $\mathrm{H}_{2} \mathrm{O} 6$ water molecules, and the $\mathrm{O} 4=\mathrm{C} 1$ group, together with those involving the $\mathrm{N}_{1} \mathrm{H}_{2}$ and N 2 groups of adjacent cyanoureate ions, are shown as dotted lines. Key: large black spheres are Cu atoms, small white spheres are O atoms, small dark-grey spheres are N atoms, small black spheres are C atoms and very small white spheres are H atoms. The symmetry codes are as in Table 2.
ligand resembles that of the dicyanamide ion (Batten \& Murray, 2003), particularly as observed in the two polymorphs of silver dicyanamide (Britton \& Chow, 1977; Britton, 1990).

Experimental

Single crystals of the title compound, in the form of blue-green blocks, were obtained from the hydrolysis of $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$ions under alkaline conditions. Copper(I) dicyanamide (0.10 g) (Wang et al., 1990) was dissolved in an aqueous ammonia solution ($35 \%, 15 \mathrm{ml}$) containing 10 drops of hydrazine. This formed a deep-blue solution which, over the course of 10 min , turned through green to orange. After a few days, the solution had returned to the deep-blue colour and after 10 months a small number of crystals suitable for singlecrystal X-ray diffraction had grown. Intense bands were observed in the IR spectrum recorded in Spectrosol over the range 4000$1300 \mathrm{~cm}^{-1}: 3467,3354,3312,3220(\nu \mathrm{~N}-\mathrm{H}, \mathrm{O}-\mathrm{H}) ; 2174,2137$ (v $\mathrm{C} \equiv \mathrm{N}) ; 1657$, $1650(\nu \mathrm{C}-\mathrm{O}) ; 1535,1529\left(\delta \mathrm{NH}_{2}\right) ; 1412(\nu \mathrm{C}-\mathrm{N})$.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}\right)(\mathrm{OH})_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=298.22$
Monoclinic, $P 2_{1} / c$
$a=12.4648$ (5) A
$b=6.3096$ (2) \AA
$c=10.6032(5) \AA$
$\beta=103.269$ (4) ${ }^{\circ}$

Data collection

Oxford Diffraction Xcalibur areadetector diffractometer
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.67, T_{\text {max }}=0.73$

$$
V=811.66(6) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=5.25 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.20 \times 0.08 \times 0.06 \mathrm{~mm}$

6870 measured reflections
2688 independent reflections
1731 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	1.9145 (17)	Cu3-O1	2.3238 (15)
$\mathrm{Cu} 1-\mathrm{O} 2$	1.9736 (16)	Cu3-O2	2.0061 (18)
$\mathrm{Cu} 1-\mathrm{O}^{2 i}$	1.9877 (16)	$\mathrm{Cu} 3-\mathrm{O} 3$	1.9923 (15)
Cu1-O3	1.9733 (17)	O4-C1	1.256 (3)
$\mathrm{Cu} 1-\mathrm{N} 3$	2.426 (2)	N1-C1	1.340 (3)
$\mathrm{Cu} 1-\mathrm{N} 3{ }^{\text {iii }}$	2.658 (2)	N2-C1	1.359 (3)
$\mathrm{Cu} 2-\mathrm{O} 1$	1.9119 (14)	N2-C2	1.307 (3)
$\mathrm{Cu} 2-\mathrm{O} 3$	1.9925 (14)	N3-C2	1.159 (3)
$\mathrm{Cu} 2-\mathrm{N} 3$	2.532 (2)		
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {ii }}$	89.58 (6)	$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Cu} 3-\mathrm{O} 1$	74.31 (6)
$\mathrm{N} 3^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	88.94 (6)	$\mathrm{O}^{\mathrm{v}}-\mathrm{Cu} 3-\mathrm{O} 1$	105.27 (6)
$\mathrm{O} 2^{\text {ii }}-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	84.62 (7)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Cu} 3-\mathrm{O} 2$	180
$\mathrm{N} 3^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 2$	84.20 (6)	$\mathrm{O} 3{ }^{\mathrm{v}}-\mathrm{Cu} 3-\mathrm{O} 2$	99.27 (6)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 2$	173.67 (5)	$\mathrm{O} 1-\mathrm{Cu} 3-\mathrm{O} 2$	105.69 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2$	96.40 (7)	$\mathrm{O}^{\text {v}}-\mathrm{Cu} 3-\mathrm{O} 3$	180
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 3$	89.92 (6)	$\mathrm{O} 1-\mathrm{Cu} 3-\mathrm{O} 3$	74.73 (6)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{O} 3$	96.85 (7)	$\mathrm{O} 2-\mathrm{Cu} 3-\mathrm{O} 3$	80.73 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	178.14 (6)	$\mathrm{Cu} 3-\mathrm{O} 1-\mathrm{Cu} 1^{\text {vi }}$	96.09 (6)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	82.01 (7)	$\mathrm{Cu} 3-\mathrm{O} 1-\mathrm{Cu} 2$	95.80 (6)
$\mathrm{N} 3{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{N} 3$	179.15 (2)	$\mathrm{Cu}{ }^{\text {vi }}-\mathrm{O} 1-\mathrm{Cu} 2$	105.87 (7)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 3$	90.36 (7)	$\mathrm{Cu} 3-\mathrm{O} 2-\mathrm{Cu} 1^{\text {iii }}$	104.78 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	91.90 (7)	$\mathrm{Cu} 3-\mathrm{O} 2-\mathrm{Cu} 1$	98.30 (7)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 3$	95.84 (7)	$\mathrm{Cu} 1^{\text {iii }}-\mathrm{O} 2-\mathrm{Cu} 1$	105.85 (8)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 3$	89.24 (7)	$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{Cu} 3$	104.69 (6)
$\mathrm{N} 3{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 1$	92.82 (7)	$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{Cu} 1$	103.87 (7)
$\mathrm{O3}^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 1$	95.24 (6)	$\mathrm{Cu} 3-\mathrm{O} 3-\mathrm{Cu} 1$	98.77 (7)
$\mathrm{O}^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 1$	180	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	116.8 (2)
$\mathrm{N} 3{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 3$	94.12 (7)	$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 2$	135.90 (18)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 3$	180	$\mathrm{Cu} 2-\mathrm{N} 3-\mathrm{C} 2$	119.21 (19)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 3$	84.76 (6)	$\mathrm{Cu} 1^{\text {ii }}-\mathrm{N} 3-\mathrm{C} 2$	145.31 (18)
$\mathrm{N} 3{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{N} 3$	180	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	114.0 (2)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 3$	87.18 (7)	N2-C1-O4	125.73 (18)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 3$	85.88 (7)	N1-C1-O4	120.3 (2)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Cu} 3-\mathrm{O} 1$	180	N2-C2-N3	174.7 (3)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x,-y+1,-z+1$; (v) $-x,-y,-z+1$; (vi) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 4$	0.841 (9)	1.954 (14)	2.770 (2)	163 (3)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {vii }}$	0.846 (9)	1.943 (14)	2.786 (2)	175
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$	0.841 (9)	1.997 (16)	2.824 (2)	167
$\mathrm{N} 1-\mathrm{H} 5 \cdots \mathrm{~N} 2^{\text {viii }}$	0.85 (3)	2.21 (3)	3.055 (3)	174
O5-H6 . ${ }^{\text {O6 }}$	0.845 (10)	2.216 (18)	2.980 (3)	150 (3)
$\mathrm{O} 5-\mathrm{H} 7 \cdots \mathrm{O} 4^{\text {ix }}$	0.844 (9)	1.943 (11)	2.782 (3)	172
O6-H8 $\cdots{ }^{\text {a }}{ }^{\text {x }}$	0.849 (10)	2.12 (3)	2.842 (3)	142
O6-H9 . ${ }^{\text {O }} 5^{\text {x }}$	0.850 (30)	2.17 (3)	2.987 (3)	161

Symmetry codes: (iv) $-x,-y+1,-z+1$; (vii) $x, y-1, z ;$ (viii) $-x+1,-y+1,-z+1$; (ix) $x, y+1, z$; (x) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

Refinement

$R[F>2 \sigma(F)]=0.031$
$w R(F)=0.025$
$S=1.11$
1731 reflections
151 parameters 9 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.96 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.81 \mathrm{e}^{-3}$

All H atoms were located in difference Fourier maps and restrained to ride on their parent atoms $[\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.85$ (1) $\AA]$. For the H atoms attached to framework atoms O1-O3, the fractional coordinates and isotropic displacement parameters were refined. For the remaining H atoms on water molecules $\mathrm{H}_{2} \mathrm{O} 5$ and $\mathrm{H}_{2} \mathrm{O} 6$ and
amide fragment $-\mathrm{N}_{1} \mathrm{H}_{2}$, the fractional coordinates were refined, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$ and $1.2 U_{\text {eq }}(\mathrm{N})$, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS

The authors thank the EPSRC for a grant in support of the purchase of a single-crystal diffractometer and a studentship for EJB.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EM3026). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Arizaga, G. G. C., Satyanarayana, K. G. \& Wypych, F. (2007). Solid State Ionics, 178, 1143-1162.
Batten, S. R. \& Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Britton, D. (1987). Acta Cryst. C43, 2442-2443.
Britton, D. (1990). Acta Cryst. C46, 2297-2299.
Britton, D. \& Chow, Y. M. (1977). Acta Cryst. B33, 697-699.
Effenberger, H. (1983). Z. Kristallogr. 165, 127-135.
Escuer, A., McKee, V., Nelson, J., Ruiz, E., Sanz, N. \& Vincente, R. (2004). Chem. Eur. J. 11, 398-405.
Evans, D. G. \& Slade, R. C. T. (2006). Structure and Bonding, Vol. 119, edited by X. Duan \& D. G. Evans, pp. 1-88. Berlin: Springer-Verlag.
Fujita, W. \& Awaga, K. (1996). Inorg. Chem. 35, 1915-1917.
Fujita, W. \& Awaga, K. (1997). J. Am. Chem. Soc. 119, 4563-4564.
Guillou, N., Louër, M. \& Louër, D. (1994). J. Solid State Chem. 109, 307-314.
Hawthorne, F. W. (1985). Mineral. Mag. 49, 87-89.
Jiménez-López, A., Rodríguez-Castellón, E., Olivera-Pastor, P., MairelesTorres, P., Tomlinson, A. A. G., Jones, D. J. \& Rozière, J. (1993). J. Mater. Chem. 3, 303-307.
Laget, V., Hornick, C., Rabu, P. \& Drillon, M. (1999). J. Mater. Chem. 9, 169174.

Laget, V., Hornick, C., Rabu, P., Drillon, M. \& Ziessel, R. (1998). Coord. Chem. Rev. 178, 1533-1553.
Lotsch, B. V. \& Schnick, W. (2004). Z. Naturforsch. Teil B, 59, 1229-1240.
Masciocchi, N., Corradi, E., Sironi, A., Moretti, G., Minelli, G. \& Porta, P. (1997). J. Solid State Chem. 131, 252-262.

Oswald, H. R., Iitaka, Y., Locchi, S. \& Ludi, A. (1961). Helv. Chim. Acta, 44, 2103-2109.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Park, S. H. \& Lee, C. E. (2005). J. Phys. Chem. 109, 1118-1124.
Rives, V. (2001). In Layered Double Hydroxides: Present and Future. New York: Nova Science Publishers.
Schmidt, M., Moeller, H. \& Lutz, H. D. (1993). Z. Anorg. Allg. Chem. 619, 1287-1294.
Wang, H. H., Kini, A. M., Montgomery, L. K., Geiser, U., Carlson, K. D., Williams, J. M., Thompson, J. E., Watkins, D. M., Kwok, W. K., Welp, U. \& Vandervoort, K. G. (1990). Chem. Mater. 2, 482-484.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Yamanaka, S., Sako, T., Seki, K. \& Hattori, M. (1992). Solid State Ionics, 53, 527-533.

